4,773 research outputs found

    Non-leptonic B-decays, CP violation & the UT

    Full text link
    We study the implication of the time-dependent CP asymmetry in B→π+π−B\to\pi^+\pi^- decays on the extraction of weak phases taking into account the precise measurement of sin⁥2ÎČ\sin 2\beta, obtained from the ``gold-plated''mode B→J/ψKSB\to J/\psi K_S. Predictions and uncertainties for the hadronic parameters are investigated in QCD factorization. Furthermore, independent theoretical and experimental tests of the factorization framework are briefly discussed. Finally, a model-independent bound on the unitarity triangle from CP violation in B→π+π−B\to\pi^+\pi^- and B→J/ψKSB\to J/\psi K_S is derived.Comment: 4 pages; 4 figures (requires epsfig, psfrag); To appear in the proceedings of the 11th International Conference on Quantum Chromodynamics (QCD 04), Montpellier, France, 5--10th July 200

    Large electroweak penguin contribution in B -> K pi and pi pi decay modes

    Full text link
    We discuss about a possibility of large electroweak penguin contribution in B -> K pi and pi pi from recent experimental data. The experimental data may be suggesting that there are some discrepancies between the data and theoretical estimation in the branching ratios of them. In B -> K pi decays, to explain it, a large electroweak penguin contribution and large strong phase differences seem to be needed. The contributions should appear also in B -> pi pi. We show, as an example, a solution to solve the discrepancies in both B -> K pi and B -> pi pi. However the magnitude of the parameters and the strong phase estimated from experimental data are quite large compared with the theoretical estimations. It may be suggesting some new physics effects are including in these processes. We will have to discuss about the dependence of the new physics. To explain both modes at once, we may need large electroweak penguin contribution with new weak phases and some SU(3) breaking effects by new physics in both QCD and electroweak penguin type processes.Comment: 23 pages, 9 figure

    Exploring the Unitarity Triangle through CP violation observables in Bs→K+K−B_s \to K^+ K^-

    Full text link
    We discuss the determination of the CKM parameters from the forthcoming CPCP violation observables in Bs→K+K−B_s \to K^+ K^- decays. Combining the information on mixing induced CP violation in Bs→K+K−B_s \to K^+ K^-, with the Bd→J/ψKsB_d \to J/\psi K_s precision observable sin⁥2ÎČ\sin 2\beta and the Bs0B^0_s--Bs0ˉ\bar{B^0_s} mixing phase ϕs\phi_s, we propose a determination of the unitarity triangle (ρˉ,ηˉ)(\bar\rho, \bar\eta). Computing the penguin parameters (r,Ξ)(r, \theta) within QCD factorization yield precise determination of (ρˉ,ηˉ)(\bar\rho, \bar\eta), reflected by a weak dependence on the Ξ\theta which is shown as a second order effect. The impact of the direct CP violation observable CKKC_{KK} on the penguin parameters are investigated and a lower bound on CKKC_{KK} is extracted. We also discuss the effect of the Bs0B^0_s--Bs0ˉ\bar{B^0_s} new physics mixing phase on the penguin parameters (r,Ξ)(r, \theta) and SKKS_{KK}. Using the SU(3)-flavour symmetry argument and the current BB-factories data provided by the Bd→π+π−B_d \to \pi^+ \pi^- modes, we complement the Bs→K+K−B_s \to K^+ K^- CP-violating observables in a variety of ways, in particular we find that SKK>0S_{KK}>0. Finally we analyze systematically the SU(3)-symmetry breaking factor within QCD factorization.Comment: 22 pages, 6 figures, typos corrected, reference and some remarks adde

    Obtaining CKM Phase Information from B Penguin Decays

    Full text link
    We discuss a method for extracting CP phases from pairs of B decays which are related by flavor SU(3). One decay (B0 -> M1 M2) receives a significant bbar -> dbar penguin contribution. The second (B' -> M1' M2') has a significant bbar -> sbar penguin contribution, but is dominated by a single amplitude. CP phase information is obtained using the fact that the B' -> M1' M2' amplitude is related by SU(3) to a piece of the B0 -> M1 M2 amplitude. The leading-order SU(3)-breaking effect (~25%) responsible for the main theoretical error can be removed. For some decay pairs, it can be written in terms of known decay constants. In other cases, it involves a ratio of form factors. However, this form-factor ratio can either be measured experimentally, or eliminated by considering a double ratio of amplitudes. In all cases, one is left only with a second-order effect, ~5%. We find twelve pairs of B decays to which this method can be applied. Depending on the decay pair, we estimate the total theoretical error in relating the B' -> M1' M2' and B0 -> M1 M2 amplitudes to be between 5% and 15%. The most promising decay pairs are Bd -> pi+ pi- and Bu+ -> K0 pi+, and Bd -> D+ D- and Bd -> Ds+ D- or Bu+ -> Ds+ D0bar.Comment: 38 pages, JHEP format, no figures. Comments added to text regarding most promising decay pairs; references added; conclusions unchange

    Charm production in nonresonant e(+)e(-) annihilations at √s =10.55 GeV

    Get PDF
    This is the publisher's version also available electronically from http://journals.aps.org/prd/abstract/10.1103/PhysRevD.37.1719We report results on the differential and total cross sections for inclusive production of the charmed particles D*+, D*(0), D(0), D(+), D(s), and Λc in e(+)e(-) annihilations at √s=10.55 GeV. Widely used quark fragmentation models are discussed and compared with the measured charmed-particle momentum distributions. This comparison, as well as that with measurements at other center-of-mass energies, shows the need to take QCD corrections into account and their importance for a correct interpretation of the model parameters. The observed rate of D(0) and D(+) production is compared to the expected total charm production cross section. We measure the probability of a charmed meson being produced as a vector meson and the D*(+) decay branching fraction into D(0)π+

    Differential branching fraction and angular analysis of the decay B0→K∗0ÎŒ+Ό−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 ÎŒ + ÎŒ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+Îł decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Measurements of Flavour Dependent Fragmentation Functions in Z^0 -> qq(bar) Events

    Get PDF
    Fragmentation functions for charged particles in Z -> qq(bar) events have been measured for bottom (b), charm (c) and light (uds) quarks as well as for all flavours together. The results are based on data recorded between 1990 and 1995 using the OPAL detector at LEP. Event samples with different flavour compositions were formed using reconstructed D* mesons and secondary vertices. The \xi_p = ln(1/x_E) distributions and the position of their maxima \xi_max are also presented separately for uds, c and b quark events. The fragmentation function for b quarks is significantly softer than for uds quarks.Comment: 29 pages, LaTeX, 5 eps figures (and colour figs) included, submitted to Eur. Phys. J.
    • 

    corecore